
Session Types
Towards safe and fast reconfigurable programming

HEART 2012

Nicholas Ng, Nobuko Yoshida,
Xin Yu Niu, Kuen Hung Tsoi, Wayne Luk

Department of Computing, Imperial College London

Imperial College London

May 31, 2012

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 1 / 33

Motivation

Parallel and heterogeneous architectures

Combines parallelism and specialisation, eg FPGA
Efficient use of computing resources
Difficult to program (correctly)

One source of error of parallelising

Communication mismatch (send-receive)
Communication deadlocks

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 2 / 33

Message passing communication

Message passing communication

scalable, commonly used

MPI (Message-Passing Interface)

common for communication in parallel computers

Communication mismatch and deadlocks

lead to program error

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 3 / 33

Motivating example

if (rank == 0) { // Program 0

MPI Send(a, 5, MPI INT, 1 , TAG, MPI COMM WORLD);

MPI Recv(b, 5, MPI INT, 1 , TAG, MPI COMM WORLD);
} else if (rank == 1) { // Program 1

MPI Send(b, 5, MPI INT, 0 , TAG, MPI COMM WORLD);

MPI Recv(a, 5, MPI INT, 0 , TAG, MPI COMM WORLD);
}

Program 0 Program 1

Send a

Recv b

Send b

Recv a

Figure: Interaction of two processes with a deadlock.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 4 / 33

Contributions

An intuitive programming framework and toolchain

For message-passing parallel programming
Based on formal and explicit interaction protocol

Advanced communication topologies for computer clusters

Case study comparing framework with existing tools

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 5 / 33

Proposal: Session types

Session Types [Honda et al. ESOP’98, POPL’08]

Typing system for communication
Ensure compatible communication (send-receive) by typing

Sequence of send and receive
Also types flow-control constructs (eg. loops, if-then-else)

Ideal to integrate into programming language

Program 0 Program 1

Send a

Recv b

Send b

Recv a

Figure: Incompatible.

Program 0 Program 1

Send a

Recv b

Recv a

Send b

Figure: Compatible.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 6 / 33

Session C programming framework: Aims

Minimal extension of C language to support Session Types

General communication-based framework

Safe distributed parallel programming
High performance applications

Focussed on computer cluster communication

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 7 / 33

Session C toolchain and key reasoning

Protocol

ProtAlice

Alice

ProtBob

Bob

ProtCarol

Carol Session C program

Endpoint protocol

Global protocol

Projection

Conformance

1 Design protocol in global view
2 Automatic projection to endpoint protocol, algorithm preserves safety
3 Write program according to endpoint protocol
4 Check program conforms to protocol
5 ⇒ Safe program by design

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 8 / 33

Scribble protocol specification language: Example

/∗ Global protocol ∗/
protocol Simple

(role P1, role P2, role P3) {
int from P1 to P2;
char from P3 to P1;
float from P2 to P3

}

P1 P2 P3

int

char

float

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 9 / 33

Scribble protocol specification language: Example

/∗ Endpoint protocol for P2 ∗/
protocol Simple at P2

(role P1, role P3) {
int from P1;

float to P3;
}

Projection of Simple with respect
to P2

Endpoint protocol from
perspective of P2

P1 P2 P3

int

char

float

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 10 / 33

Session C Architecture

clang compiler

Session type checker

Endpoint Scribble
protocol

Session C source
code

Runtime library

Executable

User input protocol and C source code

Session C framework

Runtime/communication API
Session Type checker

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 11 / 33

Session C Architecture: Session Type checker

clang compiler

Session type checker

Endpoint Scribble
protocol

Session C source
code

Runtime library

Executable

Static analyser for source code

Verify source code conforms with protocol specification

Protocol extracted based on usage of API

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 12 / 33

Example topologies in the framework

Topology safe if can be described in framework

Subject to global protocol well-formedness conditions

Examples: Ring topology and map-reduce

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 13 / 33

Topologies: Ring

Node2

Noden−1

3
Node1

2

Node0

1

Noden
5

4

protocol Ring {
rec LOOP {

datatype from Node0 to Node1;
datatype from Node1 to NodeN;
// Wrap back to Node0
datatype from NodeN to Node0;
LOOP;
}
}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 14 / 33

Topologies: Map-reduce

.

.

.
Master Master

Workern

Worker0 protocol MR {
rec LOOP {

datatype from Master to Worker0,
Worker1;

datatype from Worker0,
Worker1 to Master;

LOOP;
}
}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 15 / 33

Evaluation

Comparing session-enhanced programming with MPI

Strength: Protocol known (and safe) at implementation time

Asynchronous operation re-ordering

Optimisation applied to implementations
Correctness ensured by Session Type checker

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 16 / 33

Evaluation: environment

Heterogeneous Computing Node (HCN)

CPU

PCIe bus

GPU
Graphics memory

FPGA
FPGA memory

Ethernet
RAM

Inter-node
communication

Infiniband
inter-FPGA
communication

Heterogeneous accelerators

Multicore CPU
GPU
FPGA

Communication

Inter-node: Ethernet
Inter-component: PCI
Inter-FPGA: Infiniband

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 17 / 33

N-body simulation accelerated by FPGA (Java)

 5

 10

 15

 20

 25

 30

 35

 20 25 30 35 40 45

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of particles (x1000)

SJ
SJ (FPGA)

MPJ Express

Session Java comparable to MPJ Express (MPI in Java)

FPGA overhead improves with larger input size

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 18 / 33

N-body simulation accelerated by FPGA (C)

 0

 5

 10

 15

 20

 25

 30

 20 30 40 50 60 70 80 90

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of particles (x1000)

MPI (FPGA)
Session C (FPGA)

MPI
Session C

Session C performance same as MPI

Significant improvement with FPGA acceleration

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 19 / 33

Scalability: N-body simulation and K-means clustering

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

 1 2 3 4 5 6

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of nodes

k-means MPI
k-means Session C

n-body MPI
n-body Session C

Performance improve with number of nodes

MPI and Session C converge as nodes increase

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 20 / 33

Evaluation: Summary

Session-enhanced languages (Java and C)

Communication safety ensured
Negligible performance cost
FPGA acceleration improves performance
Solution scalable

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 21 / 33

Future work

Extending approach to include eg GPU or other hardware

MPI-compatible runtime for multiparty session programming

Integrate with customisable communication framework [Denholm et
al., ASAP’11]

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 22 / 33

Conclusion

Introduced a programming and verification framework for
communication in C

Shown advanced communication topologies for computer clusters

Performance evaluation of framework against existing tools

Competitive performance

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 23 / 33

Try it!

Session C runtime and type-checker
http://sesscc.googlecode.com

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 24 / 33

http://sesscc.googlecode.com

Appendix

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 25 / 33

Related works

MPI Deadlock detection by model checking techniques

ISP/DAMPI [Vo et al., PPoPP’09/SC’10]
TASS [Siegel et al., PPoPP’11]

Our approach does not depend on testing or heuristics

Full guarantee of deadlock-freedom and communication-safety

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 26 / 33

Session C example: Protocol design

Description of protocol

protocol P (role A, role B) {
int from A to B;
int from B to A;

}

⇒ Description of a protocol for each
endpoints

protocol P at A (role B) {
int to B;
int from B;

}

protocol P at B(role A) {
int from A;
int to A;

}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 27 / 33

Session C example: Implementation

#include <libsess.h>
int main() { // A session C program

session ∗s; int ival , sum = 0;
// Start a session that follows the protocol ”Protocol Endpoint”
join session (&argc, &argv, &s, ”Protocol Endpoint.spr”);
role Bob = s−>get role(s, ”Bob”); // Get role handle

send int (Bob, 42); // Send int to Bob
while (i<3) {

recv int (Bob, &ival); // Recv int from Bob
sum += ival;
}
send int (Bob, sum); // Send int to Bob

end session (s); // End a session
return 0;
}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 28 / 33

Ring topology: full example

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 29 / 33

N-body simulation: Ring topology (1)

Input segmented to n parts

Results shifted right until all nodes worked on all segments

Body nBody 0

Head Tail

N-node ring topology

protocol Nbody /∗ Global protocol ∗/
(role Head, role Body, role Tail) {

rec NrOfSteps {
rec SubCompute {

particles from Head to Body;
particles from Body to Tail;
particles from Tail to Head;

SubCompute; }
NrOfSteps; }

}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 30 / 33

N-body simulation: Ring topology (2)

/∗ Endpoint Protocol ∗/
protocol Nbody at Body

(role Head, role Tail) {
rec NrOfIters {
rec SubCompute {

particles from Head;
particles to Tail ;

SubCompute;}

NrOfIters ;}
}

/∗ Implementation of Body worker ∗/
particle t ∗ps, ∗tmp ps;
while (iterations ++ < ITERS NR) {
while (rounds++ < NODES NR) {
send particles(Tail , tmp ps);
// Update veclocities
compute forces(ps, tmp parts ,...);
recv particles (Head, &tmp ps);

} // Update positions
// by received velocities

compute positions(ps, pvs, ...);
}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 31 / 33

Asynchronous reordering

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 32 / 33

Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send B:recv

C:recv

Figure: MPST.

Stage I Stage II Stage III

A:send B:send C:send

Figure: Asynchronous subtyping.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 33 / 33

Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send

A:recv

B:recv
B:send C:recv

Figure: MPST.

Stage I Stage II Stage III

A:send B:send C:send

Figure: Asynchronous subtyping.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 33 / 33

Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send

A:recv

B:recv
B:send C:recv

C:send

Figure: MPST.

Stage I Stage II Stage III

A:send B:send C:send

Figure: Asynchronous subtyping.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 33 / 33

Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send

A:recv

B:recv
B:send C:recv

C:send

Figure: MPST.

Stage I Stage II Stage III

A:send B:send C:send

Figure: Asynchronous subtyping.

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 33 / 33

Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send

A:recv

B:recv
B:send C:recv

C:send

Figure: MPST.

Stage I Stage II Stage III

A:send
A:recv

B:send
B:recv

C:send
C:recv

Figure: Asynchronous subtyping.

Back to Evaluation

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 33 / 33

	Introduction
	Session Types
	Topologies
	Evaluation
	Conclusion
	Appendix

