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Motivation

Parallel and heterogeneous architectures

Combines parallelism and specialisation, eg FPGA
Efficient use of computing resources
Difficult to program (correctly)

One source of error of parallelising

Communication mismatch (send-receive)
Communication deadlocks
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Message passing communication

Message passing communication

scalable, commonly used

MPI (Message-Passing Interface)

common for communication in parallel computers

Communication mismatch and deadlocks

lead to program error
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Motivating example

if (rank == 0) { // Program 0

MPI Send(a, 5, MPI INT, 1 , TAG, MPI COMM WORLD);

MPI Recv(b, 5, MPI INT, 1 , TAG, MPI COMM WORLD);
} else if (rank == 1) { // Program 1

MPI Send(b, 5, MPI INT, 0 , TAG, MPI COMM WORLD);

MPI Recv(a, 5, MPI INT, 0 , TAG, MPI COMM WORLD);
}

Program 0 Program 1

Send a

Recv b

Send b

Recv a

Figure: Interaction of two processes with a deadlock.
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Contributions

An intuitive programming framework and toolchain

For message-passing parallel programming
Based on formal and explicit interaction protocol

Advanced communication topologies for computer clusters

Case study comparing framework with existing tools
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Proposal: Session types

Session Types [Honda et al. ESOP’98, POPL’08]

Typing system for communication
Ensure compatible communication (send-receive) by typing

Sequence of send and receive
Also types flow-control constructs (eg. loops, if-then-else)

Ideal to integrate into programming language

Program 0 Program 1

Send a

Recv b

Send b

Recv a

Figure: Incompatible.

Program 0 Program 1

Send a

Recv b

Recv a

Send b

Figure: Compatible.
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Session C programming framework: Aims

Minimal extension of C language to support Session Types

General communication-based framework

Safe distributed parallel programming
High performance applications

Focussed on computer cluster communication

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 7 / 33



Session C toolchain and key reasoning

Protocol

ProtAlice

Alice

ProtBob

Bob

ProtCarol

Carol Session C program

Endpoint protocol

Global protocol

Projection

Conformance

1 Design protocol in global view
2 Automatic projection to endpoint protocol, algorithm preserves safety
3 Write program according to endpoint protocol
4 Check program conforms to protocol
5 ⇒ Safe program by design
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Scribble protocol specification language: Example

/∗ Global protocol ∗/
protocol Simple

( role P1, role P2, role P3) {
int from P1 to P2;
char from P3 to P1;
float from P2 to P3

}

P1 P2 P3

int

char

float
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Scribble protocol specification language: Example

/∗ Endpoint protocol for P2 ∗/
protocol Simple at P2

( role P1, role P3) {
int from P1;

float to P3;
}

Projection of Simple with respect
to P2

Endpoint protocol from
perspective of P2

P1 P2 P3

int

char

float
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Session C Architecture

clang compiler

Session type checker

Endpoint Scribble
protocol

Session C source
code

Runtime library

Executable

User input protocol and C source code

Session C framework

Runtime/communication API
Session Type checker
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Session C Architecture: Session Type checker

clang compiler

Session type checker

Endpoint Scribble
protocol

Session C source
code

Runtime library

Executable

Static analyser for source code

Verify source code conforms with protocol specification

Protocol extracted based on usage of API
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Example topologies in the framework

Topology safe if can be described in framework

Subject to global protocol well-formedness conditions

Examples: Ring topology and map-reduce

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 13 / 33



Topologies: Ring

Node2

Noden−1

3
Node1

2

Node0

1

Noden
5

4

protocol Ring {
rec LOOP {

datatype from Node0 to Node1;
datatype from Node1 to NodeN;
// Wrap back to Node0
datatype from NodeN to Node0;
LOOP;
}
}
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Topologies: Map-reduce

.

.

.
Master Master

Workern

Worker0 protocol MR {
rec LOOP {

datatype from Master to Worker0,
Worker1;

datatype from Worker0,
Worker1 to Master;

LOOP;
}
}
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Evaluation

Comparing session-enhanced programming with MPI

Strength: Protocol known (and safe) at implementation time

Asynchronous operation re-ordering

Optimisation applied to implementations
Correctness ensured by Session Type checker

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 16 / 33



Evaluation: environment

Heterogeneous Computing Node (HCN)

CPU

PCIe bus

GPU
Graphics memory

FPGA
FPGA memory

Ethernet
RAM

Inter-node
communication

Infiniband
inter-FPGA
communication

Heterogeneous accelerators

Multicore CPU
GPU
FPGA

Communication

Inter-node: Ethernet
Inter-component: PCI
Inter-FPGA: Infiniband
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N-body simulation accelerated by FPGA (Java)
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Session Java comparable to MPJ Express (MPI in Java)

FPGA overhead improves with larger input size
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N-body simulation accelerated by FPGA (C)
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Session C performance same as MPI

Significant improvement with FPGA acceleration
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Scalability: N-body simulation and K-means clustering
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Performance improve with number of nodes

MPI and Session C converge as nodes increase
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Evaluation: Summary

Session-enhanced languages (Java and C)

Communication safety ensured
Negligible performance cost
FPGA acceleration improves performance
Solution scalable
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Future work

Extending approach to include eg GPU or other hardware

MPI-compatible runtime for multiparty session programming

Integrate with customisable communication framework [Denholm et
al., ASAP’11]

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 22 / 33



Conclusion

Introduced a programming and verification framework for
communication in C

Shown advanced communication topologies for computer clusters

Performance evaluation of framework against existing tools

Competitive performance
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Try it!

Session C runtime and type-checker
http://sesscc.googlecode.com
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Appendix
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Related works

MPI Deadlock detection by model checking techniques

ISP/DAMPI [Vo et al., PPoPP’09/SC’10]
TASS [Siegel et al., PPoPP’11]

Our approach does not depend on testing or heuristics

Full guarantee of deadlock-freedom and communication-safety
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Session C example: Protocol design

Description of protocol

protocol P ( role A, role B) {
int from A to B;
int from B to A;

}

⇒ Description of a protocol for each
endpoints

protocol P at A (role B) {
int to B;
int from B;

}

protocol P at B(role A) {
int from A;
int to A;

}
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Session C example: Implementation

#include <libsess.h>
int main() { // A session C program

session ∗s; int ival , sum = 0;
// Start a session that follows the protocol ”Protocol Endpoint”
join session (&argc, &argv, &s, ”Protocol Endpoint.spr”);
role Bob = s−>get role(s, ”Bob”); // Get role handle

send int (Bob, 42); // Send int to Bob
while ( i<3) {

recv int (Bob, &ival ); // Recv int from Bob
sum += ival;
}
send int (Bob, sum); // Send int to Bob

end session (s ); // End a session
return 0;
}

Ng, Yoshida, Niu, Tsoi and Luk (IC) Session Types: Towards safe and fast reconfigurable programmingMay 31, 2012 28 / 33



Ring topology: full example
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N-body simulation: Ring topology (1)

Input segmented to n parts

Results shifted right until all nodes worked on all segments

Body nBody 0

Head Tail

N-node ring topology

protocol Nbody /∗ Global protocol ∗/
( role Head, role Body, role Tail ) {

rec NrOfSteps {
rec SubCompute {

particles from Head to Body;
particles from Body to Tail;
particles from Tail to Head;

SubCompute; }
NrOfSteps; }

}
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N-body simulation: Ring topology (2)

/∗ Endpoint Protocol ∗/
protocol Nbody at Body

( role Head, role Tail ) {
rec NrOfIters {
rec SubCompute {

particles from Head;
particles to Tail ;

SubCompute;}

NrOfIters ;}
}

/∗ Implementation of Body worker ∗/
particle t ∗ps, ∗tmp ps;
while ( iterations ++ < ITERS NR) {
while (rounds++ < NODES NR) {
send particles( Tail , tmp ps);
// Update veclocities
compute forces(ps, tmp parts ,...);
recv particles (Head, &tmp ps);

} // Update positions
// by received velocities

compute positions(ps, pvs, ... );
}
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Asynchronous reordering
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Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send B:recv

C:recv

Figure: MPST.

Stage I Stage II Stage III

A:send B:send C:send

Figure: Asynchronous subtyping.
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Safe pipeline communication

Some synchronous operations can be safely reordered [Mostrous et
al., ESOP’09]

Pipelines impossible in ‘strict’ multiparty session types, possible with
asynchronous subtyping

Safe pipeline improves performance, more scalable

Stage I Stage II Stage III
A:send

A:recv

B:recv
B:send C:recv

C:send

Figure: MPST.

Stage I Stage II Stage III

A:send
A:recv

B:send
B:recv

C:send
C:recv

Figure: Asynchronous subtyping.

Back to Evaluation
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